If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40k^2=360
We move all terms to the left:
40k^2-(360)=0
a = 40; b = 0; c = -360;
Δ = b2-4ac
Δ = 02-4·40·(-360)
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-240}{2*40}=\frac{-240}{80} =-3 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+240}{2*40}=\frac{240}{80} =3 $
| a(20-1)=80+5 | | 2*(x-2)=-12 | | 2-2x3+3=-9 | | (3x-5)/(x+1)=2/7 | | 12x-11=15x+10 | | 5(2x-3=95 | | 2x-15=2x+17 | | 1d=4 | | x-0,3x=6100 | | 9(x-4)^2+1=0 | | 1234567890x9087654321=x | | 4m-m-9m=-24 | | 5x+x^2=104 | | 2d=3d | | 1.07^x=6 | | 5x+x^2-104=0 | | (1/x)+(2/3x)=9/8 | | 2/x-5/x=8/9 | | 7+q=11 | | 10+6x/1-x=6/1-x | | x+(x*0.05)=17000 | | 3x+5÷7=2 | | (3x+5)/2=(4x+10)/3 | | (x+2)/4=4x-7 | | t^2-10t-10=0 | | m÷4-4.6=-3.1 | | 3.7=6*x | | x/35=48 | | 8y+8=6y+2 | | a÷2.4-5=2.4 | | 1.6952+x=2.0 | | 54x^2-15x-2500=0 |